首先,根据直角三角形的性质以及30°-60°-90°特殊三角形的比例关系,我们可以知道,在这样的三角形中,与30°角相对的边(即短直角边)是最长边(斜边)的一半。因此,如果短直角边的长度为2厘米,则斜边的长度就是4厘米。
接下来,我们来计算另一条直角边(长直角边)的长度。在直角三角形中,可以使用勾股定理来解决这个问题。设长直角边的长度为x厘米,则有:
\[ x^2 + 2^2 = 4^2 \]
解这个方程得到:
\[ x^2 + 4 = 16 \]
\[ x^2 = 12 \]
\[ x = \sqrt{12} = 2\sqrt{3} \]
所以,另一条直角边的长度为 \(2\sqrt{3}\) 厘米。
综上所述,这个直角三角形的三条边分别为2厘米、\(2\sqrt{3}\)厘米和4厘米。这种方法不仅适用于解决此类具体问题,还可以帮助理解更多复杂的几何图形中的边长关系。